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Orbital Operations for Phobos and Deimos Exploration 

Mark S. Wallace,1 Jeffrey S. Parker2, Nathan J. Strange3, and Daniel Grebow4 
Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, 91011 

One of the deep-space human exploration activities proposed for the post-Shuttle era is a mission to 
one of the moons of Mars, Phobos or Deimos. There are several options available to the mission architect for 
operations around these bodies. These options include distant retrograde orbits (DROs), Lagrange-point 
orbits such as halos and Lyapunov orbits, and fixed-point stationkeeping or “hovering.” These three orbit 
options are discussed in the context of the idealized circular restricted three body problem, full-dynamics 
propagations, and a concept of operations. The discussion is focused on Phobos, but all results hold for 
Deimos. 

Nomenclature 
x = Position along the Phobos-Mars line (−x toward Mars), relative to Mars/Phobos barycenter 
z = Position out of the Phobos orbit plane (+z along angular momentum), relative to barycenter 
y =  Completes the right-hand frame from x and z 
ሶݔ , ሶݕ ,  ሶ = First time derivative of the x, y, and z coordinatesݖ
ሷݔ , ሷݕ ,  ሷ = Second time derivative of the x, y, and z coordinatesݖ
 = Phobos/Mars mass ratio 
 ଵ =  Distance to Marsݎ
 ଶ =  Distance to Phobosݎ
 relative to Phobos center ,(toward Mars ݎെ̅) Position along the Phobos-Mars line = ݎ̅
ത݄ = Position out of the Phobos orbit plane (+z along angular momentum), relative to Phobos center 
andݎ̅ Completes the right hand frame from = ݒ̅ ത݄. 

ሶݎ̅ , ሶݒ̅ , ത݄ሶ  =  First time derivative of the ̅ݒ̅ ,ݎ, and ത݄ coordinates 

ሷݎ̅ , ሷݒ̅ , ത݄ሷ  = Second time derivative of the ̅ݒ̅ ,ݎ, and ത݄ coordinates 
 = Phobos orbital rate 
V = Propulsive change in velocity 
M = State-transition matrix over one full period, or monodromy matrix 
λk = Eigenvalue of the monodromy matrix M 
 

Note: Phobos is used in this description, but the nomenclature applies equally to Deimos. 

I. Introduction 
NE of the deep-space human exploration activities proposed for the post-Shuttle era is a mission to one of the 
moons of Mars, Phobos or Deimos. Phobos and Deimos provide a logical bridge between human asteroid 

missions and Mars surface missions. Many of the exploration systems developed for asteroid missions can be 
applied to Phobos and Deimos missions and the in-space transportation system needed to reach Phobos and Deimos 
can be applied to later Mars surface missions. In addition, Phobos and Deimos can provide a location for base to 
support Mars surface missions and a platform for rapid-tempo telepresence activities on the surface of Mars. 

There are several options available to the mission architect for operations around small bodies such as Phobos 
and Deimos. These options include distant retrograde orbits (DROs), Lagrange-point orbits such as halos and 
Lyapunov orbits, and fixed-point stationkeeping or “hovering.” The three-body dynamics and non-spherical 
gravitation of the moons drive certain options to be more desirable than others. Direct orbits are infeasibly unstable 
due to Mars tides and the non-sphericity of the moons. Rectilinear hovers are very fuel intensive due to the Mars 
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tidal forces. DROs and Lagrange orbits are feasible, however, requiring little or no fuel to maintain. For brevity, we 
will focus our discussion on Phobos, but all results hold for Deimos. 

The classic dynamical system for the Mars-Phobos system is the circular restricted three-body problem1 
(CR3BP), as represented in equation 1. Recall that in these coordinates, Mars is at the + location along x and 
Phobos is at the – location along x. The units are canonical (Phobos-Mars distance in length, Phobos orbit period in 
time). 
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Because the mass ratios () for Deimos and Phobos are so small2, 1.7e-8 and 2.8e-9, respectively, the Clohessy-
Wiltshire (CW) equations3 (Eq. (2)) can also offer insight, particularly for trajectories relatively far from Phobos. 
The CW equations are thus the dimensioned form of the CR3BP with  set to zero and the coordinate system shifted 
from the Mars-Phobos barycenter to the Phobos center. 
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The CR3BP dynamics yield numerous periodic orbit types that remain in proximity to the secondary body 

(Phobos or Deimos, in this case). Four families of interesting periodic orbits for this study are the family of 
Lyapunov orbit, the Vertical Lyapunov (or just “vertical”) orbit, halo orbits, and distant retrograde orbit, all of which 
are depicted in Figure 1. The Lyapunov, Vertical, and Halo orbits are all nearly centered on the two proximate 
Lagrange Points, L1 and L2. These orbits are unstable, and oscillate in-plane, out-of-plane, and both in- and out-of-
plane, respectively. The DRO, on the other hand, is stable and, as we will show, this is a very useful property.  

 
Figure 1. Periodic orbits in the Circular Restricted Three-Body Problem, with the coordinates shifted to be
Phobos-centered. The blue ellipsoid is the circumscribing ellipsoid for the Phobos shape model.  
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The CR3BP and CW equations offer useful insights, but there are other forces at work in real applications. 
However, neither Phobos nor Deimos are in the perfectly circular orbits required by those equations, though Deimos 
gets closer. Phobos has a mean eccentricity of 0.01511 and Deimos has an eccentricity of 0.00024 (Ref. 2). In 
addition to this shortcoming in the dynamical systems, there are other perturbations, such as solar radiation pressure, 
“third body” gravitation (e.g. the Sun, Jupiter, the other moon), and the non-spherical gravitation of Mars and the 
proximate moon. Indeed, these last two perturbations have noticeable effects on the orbits of Phobos and Deimos 
themselves. Fortunately, these perturbations of the classic dynamics can be readily addressed via numerical 
integration of the underlying real dynamics and their forces. Unfortunately, there are other sources of noise in the 
dynamics that are unavoidable. 

Every spacecraft has some state and acceleration uncertainty. Thrusters for desaturating momentum wheels are 
never perfectly balanced, spacecraft outgas (and human-class spacecraft are notoriously noisy in this regard), and the 
forces are imperfectly modeled. For example, the infinite series used to model non-spherical gravity must be 
truncated and thermal, solar, and albedo radiation forces depend on shape and reflectivity models that are imperfect. 
These, and other effects such as measurement noise mean that the operators of a spacecraft never know exactly 
where the spacecraft is. Though, with optical-navigation, body-relative states can be very well known indeed.4 Even 
if the initial state and all external forces could be perfectly known, the spacecraft will experience maneuver 
execution errors. Phobos and Deimos proximity architectures must be responsive to these operational realities  

II. Orbit Types 
Given the CR3BP and CW equations, and considering the realities of flying a spacecraft, how, then, does one 

design a mission architecture for Phobos and Deimos exploration? The essential building blocks of an architecture 
are the potential orbits and trajectories the proposed mission could fly. We divide these trajectory types into three 
classes: hovering, Lagrange-Point orbits, and orbits. The first two classes generally remain over one spot on the 
surface of Phobos or Deimos. The hovers have their primary motion toward and away from the body, while the 
Lagrange Point orbits have a large transverse (either in- or out-of-plane) component. They can be thought of as 
being very constrained in their motion relative to the latitude and longitude of their sub-spacecraft point. The orbit 
types, on the other hand, are not so constrained. They, in concept, either cover the entire longitude space (for non-
polar orbits) or the entire latitude space (for polar orbits), or both. 

A. Hovering 
Hovering could potentially be performed at any location, and with enough fuel expenditures, certainly could be. 

However, those expenditures can quickly become prohibitive. We consider the problem of hovering using the CW 
equations, as it produces a lower-bound on the fuel requirements; the addition of the moon’s gravity will only add to 
the cost, as it acts in the direction of motion and must be countered propulsively in a rectilinear hover. 

The first location of interest is the pole of Phobos or Deimos. This is the simplest of the CW equations to 
consider, the ത݄ direction, which has a closed-form solution independent of the other two coordinates. In this closed 
form solution, the spacecraft will experience simple harmonic motion into and out of the plane, moving through the 
center of Phobos twice per Phobos orbit. It is in an orbit about Mars at the same distance as Phobos, but with a 
slightly different inclination, and this presents the main challenge to a rectilinear hover over the pole. In order to 
prevent a collision with Phobos, the spacecraft must propulsively change the node of its orbit to be alternately ahead 
of and behind Phobos in its orbit at least twice per orbit. A convenient estimate of the DV required to achieve this 
can be determined by determining the value of out-of-plane acceleration in Eq. (2) and expressing the result in 
m/s/day. For Phobos, maintaining a station 10 km above the north pole (19.2 km from the center of Phobos), 
neglecting the gravity of Phobos, requires 86 m/s/day. Deimos, being further out, requires only 4.4 m/s/day, but 
again, these values neglect the gravity of the bodies in question. 

Hovers over leading and trailing faces of Phobos are slightly more complicated, as they exist with no 
maintenance in the CW equations if there is no along-track velocity relative to Phobos and the radial position is zero 
ሶݒ̅) ൌ 0, ݎ̅ ൌ 0), regardless of the value of the along-track position. However, a spacecraft placed in that position will 
experience some acceleration in the along-track direction due to the gravity of Phobos. The effect of this 
acceleration on a spacecraft in a trailing position is to increase the semi-major axis relative to Mars, which will 
reduce the orbital period about Mars and cause the spacecraft to drop back, but not before it falls toward Phobos; a 
20 km initial altitude at the trailing position will be reduced to 16 km before the fall-back occurs. In this example, 
the semi-major axis increases from Phobos’s 9376 km to 9441 km, and the spacecraft drifts back at a rate of 2100 
km/day. This effect must be countered by reducing the spacecraft semi-major axis below that of Phobos to force it to 
drift back toward Phobos.  
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A series of fully-integrated trajectories showing the 
departure from a point 20 km above the trailing edge of 
Phobos and a two-maneuver return to the original state are 
shown in Figure 2, assuming three different total 
durations: 0.2, 0.4, and 0.6 days, in blue, green, and red, 
respectively. As can be seen in Figure 2 and Table 1, this 
strategy, even after optimizing the V, results in large 
fuel expenditures, rapid operational tempos (maneuvers 
every few hours), and large departures from the station. 
Deimos trajectories are much more compact and cheaper. 
Even at a one-day duration, the maximum altitude is less 
than 90 km and the V requirement is 6 m/s/day. At 12 
hours, the maximum altitude is 35 km and the V is 9 m/s/day. In either case, should the return frequency be equal 
to that of the orbit period about Mars, it is a very simple issue to add, for negligible additional V, a small out-of-
plane component to add the harmonic motion discussed in the previous paragraph. 

Finally, hovering over the sub-Mars or anti-Mars points of Phobos is very expensive for the same reason that the 
pole hovers are: the motion due to Mars tides dominate. Consider the case of a spacecraft in a stationary position 
above the sub-Mars point of Phobos. This spacecraft must orbit Mars at the same rate as Phobos (thus possessing the 
same semi-major axis) and have a radius less than that of Phobos. There must then a horizontal component to its 
velocity, as the lower radius position must move faster than Phobos, and a rectilinear trajectory relative to Phobos is 
impossible naturally. The natural motion of the spacecraft (absent Phobos’s gravity, again), would be the classic 
two-by-one CW ellipse, a modified version of which is the distant retrograde orbit. It could be propulsively 
accomplished by thrusting toward Phobos, effectively decreasing the acceleration due to Mars’s gravity such that the 
smaller orbit has the same period as the larger one. Using Eq. (2), if the initial conditions are set to zero, except for 
 in the anti-along-track direction. For a station 10 km above the sub-Mars point ݎthe acceleration simplifies to 3߱ଶ̅ ,ݎ̅
(23.4 km from the center of Phobos), the required DV is 315 m/s/day, plus the effect of Phobos gravity. As the 
station gets closer to the Phobos-Mars Lagrange points, the contribution to the acceleration due to Phobos’s gravity 
becomes large enough that the various Lagrange point orbits become possible.  

B. Lagrange-Point Orbits 
Given that rectilinear hovers are prohibitively expensive, other options need to be explored. The previous 

discussion allowed only motion in a rectilinear direction (or relatively small variations about it). If larger departures 
from the station are acceptable, sub- and anti-Mars stationkeeping becomes possible through the use of Lagrange 
point orbits. The CR3BP permits the existence of five fixed point solutions, namely, five places where a satellite 
may be placed such that the gravity of Mars and Phobos (or Deimos) balance with the spacecraft’s orbital motion. 
This is the case for any three-body system, including the Earth-Moon and Mars-Phobos systems. For the case of the 
Mars-Phobos system, the L1 point lies between Mars and Phobos, only 16.6 km from the center of the moon and 
only 3.1 km from the surface. The L2 point is on the far side of Phobos and only 20 meters further from the surface. 

The Lagrange point orbits: Lyapunov, Vertical, and Halo, are unstable. The stability of the orbits indicates how 
quickly a trajectory will depart from the nominal baseline periodic orbit in the presence of a small perturbation, and 
without orbital maintenance maneuvers. Instability does not, however, imply that the cost for orbital maintenance is 
high. On the contrary, it has been demonstrated that the ΔV costs to remain close to the nominal orbit are quite 
small.5,6,7 Stability as well as orbital period play an important role in determining the frequency of the stationkeeping 
maneuvers. There are many ways to gain insight into the stability properties of the orbits considered for this 
investigation. A first order analysis of the stability is available from the periodic orbit theory in the CR3BP, and 
ultimately stability is verified with simulations in the full-ephemeris model. In the CR3BP, knowledge of the 

Figure 2. Two-maneuver return trajectories to a 20
km altitude station above the trailing edge of
Phobos quickly become very large and smaller
trajectories are very expensive both in terms of fuel
and operational tempo 

Table 1: Trailing-position hovers at Phobos can be 
very expensive, very large, or both. These data were 
generated for a two-maneuver return to a stationary 
point 20 km above the trailing face. 

Duration Fuel Used Min Alt Max Alt 
0.2 day 59 m/s/day 15.3 km 27 km 
0.4 day 39 m/s/day 10.3 km 122 km 
0.6 day 27 m/s/day 9.6 km 570 km 
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eigenstructure of the state-transition matrix 
integrated over one full period, or the 
monodromy matrix M, offers insight to the 
behavior of trajectories in the 
neighborhood of the periodic orbit. Given 
a small variation from the reference orbit, 
the eigenvalues λk measure the rate of 
departure of the initial variation. For 
periodic orbits, two eigenvalues are always 
equal to one, corresponding to both modes 
along the periodic orbit itself and its orbit 
family. Of four remaining eigenvalues, if 
|λk| < 1, then λk corresponds to a stable 
mode, and likewise, for |λk| > 1, the 
associated mode is unstable. If λk is 
complex, then, additionally, the matching 
eigenvectors can be used to determine the 
frequency of toroidal motion in the vicinity 
of the reference orbit.  

The largest |λk| is important for this 
study, since it indicates the mode with the 
greatest rate of departure from the baseline 
periodic orbit. For each orbit in Figure 1, the maximum |λk| and period are plotted versus minimum geodetic orbit 
altitude over the course of one revolution (see Figure 3). Geodetic altitude is computed assuming Phobos is a triaxial 
ellipsoid, locked in the stable orientation with respect to Mars orbit. Since there is a negligible difference between 
altitude, stability, and period between the L1 and L2 orbits, the data in Figure 3 is representative of both L1 and L2 
families. The orbits with the highest minimum altitude, roughly 2.7 km, are the Lyapunov and vertical orbits that are 
closest to the libration points. These orbits are the smallest in size, since they bifurcate from the libration point. They 
also possess the greatest instability as well as the smallest period, approximately 4 hours, which factor into the 
frequency of maneuvers required for stationkeeping. As the Lyapunov and vertical orbits increase in size, the 
minimum altitude gets smaller until eventually intersecting the surface of Phobos. Similarly, for halo orbits the 
minimum altitude increases with orbit size up to 0.7 km, and then decreases until the family intersects Phobos. As 
expected, for DROs, minimum altitude and period monotonously increase with orbit size. 

However, there are three complicating factors in the Mars-Phobos system when comparing libration orbit 
missions to similar missions near the Earth and stability theory. First, since the Lagrange points are so close to 
Phobos’s surface, many of the orbits that are often considered for missions in the Earth’s neighborhood impact 
Phobos’s surface. Second, Phobos’s asymmetric gravity field plays a much larger role than it does near the Earth. 
Finally, the dynamics that drive the orbits are related to the orbital period of the smaller body about the larger 
primary; consequently, orbits about the Mars-Phobos Lagrange points have orbital periods measured in hours rather 
than weeks (Earth-Moon) or months (Sun-Earth). This significantly impacts the operational schedule for station 
keeping and surface visibility. 

Even with these mission complications, several families of libration orbits stand out as potential destinations for 
a mission to Phobos. Their characteristics are best represented by considering three classes: planar Lyapunov orbits, 
vertical Lyapunov orbits, and halo orbits, such as those illustrated in Figure 1, which are illustrated in the CR3BP. 
The CR3BP is a great planning tool, but in an environment like the Mars-Phobos system, it is prudent to reconstruct 
the trajectories in a high-fidelity model. Several example orbits from each family have been transferred into a high-
fidelity model using a multiple shooting differential corrector.8,9,10 The general characteristics of these orbits remain 
the same, but the specifics, e.g., their minimum altitude relative to Phobos, are prone to change. 

The model that used here includes a 50x50 spherical harmonic field representing Mars’ gravity, a 3x3 field 
representing Phobos’s gravity, point-mass models of the Sun, Earth, Moon, Deimos, Jupiter, and Saturn, and a solar 
radiation pressure model that assumes the spacecraft’s area-to-mass is 0.2 m2/kg with a solar flux of 
1.019794376x1017 N at 1 AU. 

Figures 4-6 show several views of an example orbit from the classes of planar Lyapunov orbit, vertical 
Lyapunov orbit, and halo orbit, respectively, after differentially correcting the orbits into the high-fidelity model of 
the system. Each of these is in orbit about the Mars-Phobos L2 point, though nearly symmetric orbits exist about the 
Mars-Phobos L1 point. The L1 orbits may be beneficial, since they are always between Mars and Phobos, providing 

(a) 

(b) 
Figure 3. (a) Instability and (b) orbit period for orbit families in
CR3BP plotted versus minimum geodetic Phobos altitude. 
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communication to the surface of either body. Each of the orbits shown requires no maneuvers whatsoever, except 
statistical station keeping maneuvers. 

Each of the three classes of orbits offers different mission characteristics. The planar Lyapunov orbits, such as 
that in Figure 4, may be as large or as small about the L1 or L2 point. The smaller the orbit is, the more consistently it 
remains near the Lagrange point – placing it about as far away as one can get from Phobos without requiring 
maneuvers. Indeed, the example orbit shown in Figure 4 oscillates from 3 to 5 km from the surface. These orbits 
have the best access to the equatorial region on either side of Phobos, though they do not have good access to the 
poles of Phobos. The class of vertical Lyapunov orbits, such as that in Figure 5, do offer a way to view the poles of 
Phobos as well as the equatorial region. The example shown traverses quite a ways out of plane, though it also 
comes very near the surface of Phobos twice per orbit. The third class of orbits, halo orbits, as illustrated in Figure 6, 
offers the most coverage of the surface of Phobos. Only a small subset of the entire family of halo orbits does not 
impact the surface, so there are very few options for the mission designer. But the example shown in Figure 6 is a 
good choice: it remains above 2 km from the surface at nearly all times, covers the equator very well, and covers 
other parts of the surface every 3.5 hours or so.  

 

 
Figure 4. Four perspectives of an example Lyapunov orbit about the Mars-Phobos L2 point in the high-
fidelity Phobos system. These views are in the Mars-Phobos rotating frame, centered about the L2 point. 
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Figure 5. Four perspectives of an example vertical Lyapunov orbit about the Mars-Phobos L2 point in the 
high-fidelity Phobos system. These views are in the Mars-Phobos rotating frame, centered about the L2 point. 

 

 
Figure 6. Four perspectives of an example halo orbit about the Mars-Phobos L2 point in the high-fidelity 
Phobos system. These views are in the Mars-Phobos rotating frame, centered about the L2 point. 
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The most challenging aspect of the libration orbits is that they are very unstable. A spacecraft placed in one of 
these orbits will remain on it indefinitely, given a perfect injection. But a small error will grow exponentially. Figure 
7 illustrated that a 1 mm/s error in velocity caused the spacecraft to completely depart the orbit after just five hours. 
A spacecraft can remain on the orbit for very little fuel – on the order of 1 m/s per month – if it performs station 
keeping maneuvers often enough and accurately enough. Historical missions to libration orbits have required 2-3 
station keeping maneuvers every orbit.11,12 The orbital period of those shown in Figures 4 – 7 is approximately 3.6 – 
4.0 hours. This suggests that station keeping maneuvers must be performed every 1.5 – 2 hours, if not more 
frequently. This is much too rapid for the station keeping to be designed anywhere on Earth; the maneuvers must be 
designed autonomously13 or by operators at Mars.  

The results of an analysis of stationkeeping requirements for various maneuver frequencies are shown in Table 
2. These results are for a vertical orbit, but they are similar for the other types as well. Assuming a 0.5 mm/s 
maneuver execution error and 1 mm/s uncertainty in the velocity of the spacecraft in the orbit, the position 
uncertainty and maneuver frequency were varied to determine the V budget required to maintain the orbit. Clearly, 
the collection of high-precision and timely navigation data is vital to support successful station keeping. Tracking 
data must be collected nearly continuously. The lower-frequency maneuvers with greater position uncertainty failed 
to converge on an answer, suggesting that the instabilities caught up with the simulated spacecraft and it either 
crashed or was ejected. As a point of comparison, 100 meter position error is comparable to that of Artemis at the 
Moon,14 and 0.1 to 1.0 meters is achievable with optical navigation techniques. It is likely that tracking data will 
include radiometric data from one or more beacons on the surface of Phobos, optical tracking of surface features on 
the moon, radiometric data from other spacecraft either in orbit about Mars or Phobos, and any radiometric data 
from Earth or the surface of Mars.  

 
  

 
Figure 7. A 1 mm/s disturbance in a Phobos halo orbit will cause the spacecraft to depart on an unstable
manifold in less than 5 hours. Depending on the direction of the disturbance, the path could be toward the
surface instead of away as depicted, which can be useful for a controlled descent to the surface. 

Table 2: High-precision navigation and frequent maneuvers are required 
to maintain a Lagrange point orbit. 

m/s/day for Vertical 
orbit maintenance 

Maintenance Period 
0.5 hours 1.0 hour 1.5 hours 2.0  hours 

Position Error: 0.1 m 0.22 0.17 0.29 0.73 
Position Error: 1.0 m 0.25 0.22 0.35 1.0 
Position Error: 10 m 1.3 1.0 1.9 N/A 
Position Error: 100 m 13.8 9.8 N/A N/A 
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C. Orbits 
The various Lagrange orbits, while very 

cheap to maintain in terms of V, still require 
intensive operations as they require maneuvers 
every few hours. Keplerian-like orbits around 
Phobos and Deimos are unstable or simply do 
not exist, given their small size and the strength 
of the Mars tides.15 The Phobos and Deimos 
spheres of influence are 7.3 km and 8.2 km, 
respectively, which do not compare well with 
their sizes (radii of 13.4 km and 7.5 km in their 
largest dimension, respectively). The Phobos 
sphere of influence is actually contained 
entirely within the moon, and a Deimos-
orbiting spacecraft would have to remain 
within 0.7 km of the surface to remain within 
the sphere of influence. As such, a stable 
Keplerian-like orbit could theoretically exist, 
but the navigation and orbit control 
requirements are extraordinary and render such 
orbits to be undesirable as a low-risk, quiet-
operations option.  

Fortunately, there does exist a trajectory 
type that combines low altitudes, stability, and ease-of-maintenance: the so-called distant retrograde orbit, or DRO, 
sometimes referred to as a quasi-satellite orbit, or QSO.16 The “distant” part of the name is a misnomer in the case of 
Phobos and Deimos as such orbits can exist very close to the surface of the moons. These orbits have the greatest 
stability when they lie entirely within the orbit plane, but they can easily incorporate out of plane velocity 
components, provided they oribt far enough away from the moon, as illustrated in Figure 4. The velocity at the sub- 
and anti-Mars points for these example orbits varies from 11 to 21 m/s and the orbit period varies from 2.9 to 6.9 
hours as the orbit moves out from the 2 km initial altitude to 30 km. 

III. Concept of Operations 
A human mission to Phobos or Deimos would likely use many of the orbits identified earlier in this paper for 

different phases of the mission. The DROs could be used as stable home base orbits between more intesive 
operations in other orbits. The Lagrange point orbits provide options for a mothership to maintain continuous 
visibility of a crew performing surface exploration in the sub or anti Mars hemispheres of Phobos or Deimos, 
although this is at the expense of more intensive station keeping. Transitions from the DROs to vertical or halo 
Lagrange point orbits cost only 10-20 m/s. The unstable manifolds from the Lagrange point orbits would also be 
useful for efficient transfers from the mothership to the surface and back. 

An example scenario for a manned Phobos mission would be for the mothership to arrive at Phobos in a DRO 
and gradually reduce the altitude to a few kilometers. During this phase the crew could remotely examine the surface 
of Phobos and verify the state of planned surface excursion sites. After the initial survey, the mothership could 
transition to a halo orbit about the Mars-Phobos L1 point. A small excursion craft could leave the mothership on an 
unstable manifold and reach Stickney crater. During the surface mission, the mothership could remain in constant 
communications with the surface crew. After the surface mission is done, the crew could take a stable manifold 
trajectory from the surface to the mothership in the halo orbit. The mothership could then transfer from the halo 
orbit to a DRO where the station keeping requirements are less demanding. A similar scenario at the L2 point could 
be used for exploration of the anti-Mars hemisphere. For missions to the Phobos North or South poles, a DRO with 
sufficient altitude could also provide for continuous communications between the mothership and the surface crew. 

Another scenario is a combined DRO/Hover scheme. A Phobos DRO with a periapse altitude of 17.8 km has an 
apoapse altitude of 20 km. At apoapse, above the trailing face, the V required to bring the spacecraft to rest relative 
to Phobos is only 13 m/s. For that relatively small cost, the spacecraft can enter the leading/trailing hover discussed 
in Section II.A. Then, performing a 6 m/s maneuver every two hours, the mothership could remain within 30 km of 
the leading face for the duration of the surface mission. While the mothership is further away and requires more fuel 
to remain on-station, it does maintain contact with a crew on the leading face, which the halo cannot. 

Figure 4. Four DRO trajectories integrated for 7 days, with
minimum altitudes varying from 2 to 30 km illustrate the
stability of this orbit type. Total lifetimes were over 60 days,
except for the 2 km orbit, which collided with Phobos at 3.25
days. 
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IV. Conclusion 
The Phobos and Deimos dynamical environment, while relatively complex, still permits the existence of 

Lagrange point orbits such as the halo orbit and the stable “distant” retrograde orbit. The DRO is a stable orbit with 
minimal station keeping requirements and can get very close to the surface. Lagrange point orbits offer continuous 
line-of-sight with portions of the surface and are ideal for short-term activities such as surface excursions, provided 
the navigation and maneuver frequency requirements can be met. Fortunately, that is well within the state of the art 
for autonomous spacecraft. Given the various advantages of the two orbit types, a mission could switch between a 
DRO “home” orbit and a Halo orbit to support short-term surface missions.  
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